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SUMMARY

A multiscale method for the numerical solution of transient convection–diffusion–reaction equations is
proposed in the present paper. Two main goals have led to the development of the present method: a
desired independence of any heuristic parameter such as the stabilization parameter in stabilized methods
and a desire for a consistent multiscale approach in space and time. The method is constituted by solution
approaches on a coarse- and a fine-scale level and by inter-scale operators for data transfer between
those two levels. A particular feature of the method is that no large matrix system has to be solved. The
results from three numerical test cases show that for both problematic flow regimes, that is, the regime of
dominant convection and the regime of dominant convection and absorption, the present method provides
completely stable solutions, which are not achieved by standard stabilized methods, particularly for the
later regime. A still to be noted current shortcoming of the proposed method reveals itself in a too smooth
resolution of regions with a sharp gradient in the solution field. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Multiscale methods have already drawn much attention during the last decade and they will prob-
ably receive even more consideration in the upcoming future. The convection–diffusion equation
is often used as a ‘testbed’ for methods later to be applied to the Navier–Stokes equations, since it
reflects the ‘competitive’ behaviour of a convective and a diffusive (or viscous) term. Convection–
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diffusion–reaction equations may appear in two different contexts: either the additional reactive
term has an actual physical meaning, or the equation can be considered a model problem for the
semi-discrete (in time) convection–diffusion or Navier–Stokes equations, with the reactive term
mimicking the discretized transient term. The Navier–Stokes equations also represent an intended
future application area of the method proposed in this paper.

A dominating convective term usually makes a standard numerical approach (e.g. the standard
Galerkin finite element method (SGFEM)) unfeasible. In the convection–diffusion–reaction equa-
tion, a reactive term is included, often posing another challenge to the numerical solution when
the reactive term or the convective and the reactive term, respectively, dominate the problem. A
particularly challenging problem was detected in [1] for large convection and absorption (i.e. a
positive reaction coefficient in terms of the later definition of this coefficient in the present paper)
in the presence of a negative streamwise gradient of the solution. Stabilized methods, although very
successfully developed for and applied to convection–diffusion problems at high Peclet number, are
typically not able to solve this problem without additional discontinuity capturing. Discontinuity-
capturing methods developed in [2, 3] for reaction-dominated problems were successfully applied
in [4] to turbulence models including ‘source’ terms. The reader may consult [5] for a recent
overview of discontinuity capturing methods for convection–diffusion equations. An exception
is the method recently proposed in [6], featuring a considerably more complicated stabilization
parameter definition, though.

Some approaches for dealing with convection-dominated convection–diffusion(–reaction) equa-
tions may be found in the literature. In the context of FEMs, one of the most popular (class of)
approach(es) are stabilized methods, such as SUPG [7, 8] (also known as the streamline diffusion
method [9]), GLS [10], USFEM [11] (see also [12] for an improved version for convection–
diffusion–reaction equations), and stabilized methods emanating from the variational multiscale
method (VMM) [13], such as the ones described in [1, 14], respectively. For overviews on sta-
bilized methods for the convection–diffusion–reaction equation, the reader is referred to [15, 16].
A related approach is the finite increment calculus (FIC), which was also recently applied to
the convection–diffusion–reaction equation in [6]. Despite their successful application to these
problems, stabilized methods essentially rely on the well-known stabilization parameter, which is
usually denoted by �. A rigorous derivation of this stabilization parameter, except in a heuristic
manner, is still lacking, although the VMM, as well as tightly related residual-free bubble methods
(see [17]), have shedded considerable light on its origin. A particular way to compute stabilization
parameters from element matrices and vectors was proposed in [18]. Other non-standard spatial
multiscale methods can be found in [19, 20].

An issue which has so far received relatively little attention compared to spatial multiscale
approaches are temporalmultiscale approaches. The problems related to a dominating reactive term
due to small time-step lengths in semi-discretization methods have recently been investigated, for
instance, in [21, 22]. In a survey of the building blocks of existing multiscale methods in various
areas of application (see [23]) which was conducted by the authors, among others, it turned out
that most of the spatial multiscale methods do not pay particular attention to the temporal aspect
of the problem at all. Some of them employ cycling strategies (i.e. the use of a number of smaller
time steps for the smaller scales during one larger time step for the larger scales). A particular
multiscale space–time technique was developed in [24]. However, it is well known that the spatial
and the temporal scale are tightly coupled with respect to the multiscale feature of the problem
in most of the cases: if the spatial scale extends over various scale levels, the temporal scale will
spread over several levels, too.
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The guidelines for the development of the present method are a complete independence of any
heuristic parameter within the method, on the one hand, and the addressing of both the spatial and
the temporal multiscale aspects of the problem by appropriate schemes, on the other hand. In the
course of the study in [23], a particular method appeared to be well suited for that goal, although
it had been applied only to problems very different from convection(–reaction)-dominated flow
problems: the gap-tooth scheme combined with projective time integration as proposed in [25].
The projective time-integration approach was separately published in [26] and recently extended
to further time-integration schemes in [27]. Similarities may also be found in the heterogeneous
multiscale methods proposed in [28].

The method to be presented in this paper acts on two resolution levels: a coarse-scale level
where an acceptable numerical solution is usually not achievable with a SGFEM and a fine-scale
level where an acceptable solution is indeed achievable. Since such a fine-scale solution over the
complete problem domain is usually linked with prohibitive computational cost, the problem will
be partitioned into a number of small (fine-scale) problems, and the assembly of the solutions to the
partitioned problem constitutes the overall (coarse-scale) solution. Thus, the method is referred to as
a ‘divide-and-conquer’ (DAC) multiscale method: the problem is first divided and then conquered
in the form of a solution assembly. The key ingredients of the proposed method, besides the solution
strategies on the coarse- and fine-scale level, are inter-scale operators providing the data transfer
between these scale levels. For problems of fluid mechanics, it was already advocated in [29] to
rather (spatially) resolve the respective problem wherever possible than to use a stabilized method.
Using meshes adapted to the boundary layer to be resolved, such an approach was proposed in [30]
for the convection–diffusion equation. It is emphasized that it is not required to have any knowledge
concerning the location of critical areas of the underlying problem for the present method.

The remainder of this paper is organized as follows. In Section 2, the basic spatial and temporal
discretization methods used within the DAC multiscale method are briefly presented: the SGFEM
and the one-step-� scheme. The DAC method is then constituted in Section 3 by describing firstly
the overall strategy and secondly the components (i.e. the coarse- and fine-scale solvers and the
inter-scale operators). This section is closed by a brief analysis of the computational cost and the
storage requirements. Results from three numerical test cases are presented in Section 4. Finally,
conclusions are drawn in Section 5.

2. BASIC SPATIAL AND TEMPORAL DISCRETIZATION METHODS

2.1. Problem statement

The strong form of the transient convection–diffusion–reaction equation may be stated as follows:
find the scalar unknown � such that

��

�t
+ a · ∇� − ��� + ��= f in �× [0, T ] (1)

where a denotes the given convective velocity field, � the given positive diffusion coefficient, �
the given reaction coefficient (�>0: absorption, �<0: production), and f a potential source term.
The problem is defined in the domain � with boundary � and during the time interval [0, T ].
Dirichlet boundary conditions are assumed on the domain boundary:

�= g on �× [0, T ] (2)
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The initial condition is given as

�=�0 in �× {0} (3)

The solution to (1) is characterized by non-dimensional numbers. Two important numbers are
the Peclet number Pe= AL/�, relating convection and diffusion, and the Damköhler number
Da= �L/A, relating reaction and convection, where A and L denote the characteristic velocity
and length of the problem, respectively.

2.2. Spatial discretization: standard Galerkin finite element method

The variational formulation corresponding to (1) is: find �∈S such that(
w,

��

�t

)
�

+ a(w,�) = (w, f )� ∀w ∈V

where

a(w,�) = (w, a · ∇�)� + (∇w, �∇�)� + (w, ��)�

employing the usual notation (·, ·)� for the L2-inner product over the domain �. S and V denote
the standard variational functional spaces for the solution and weighting function, respectively.

For an FEM, the domain � is partitioned into nel non-overlapping elements �e (e= 1, . . . , nel),
with the characteristic element length of the discretization being h. Choosing the standard finite
element (FE) function spacesSh ⊂S andVh ⊂V, the SGFEM is given as: find �h ∈Sh such that(

wh,
��h

�t

)
�

+ a(wh, �h) = (wh, f )� ∀wh ∈Vh

In the end, a matrix system as

M/̇+ (C + K + �M)/= f (4)

is obtained, where M, C, and K denote the mass, convective, and diffusive matrices, respectively.
The vector of solution values and its temporal derivative are given by / and /̇, and the right-hand-
side vector by f.

The (spatial) FE solution is characterized by the element-based counterparts of the aforemen-
tioned non-dimensional numbers: the element Peclet number

Pee(h) = |a|h
2�

and the element Damköhler number

Dae(h) = �h

|a|
Severe problems are encountered for high Pee and/or Dae, that is, an adequate (oscillation-free)
solution cannot be achieved with the SGFEM. As a remedy for particularly the high Pee regime,
stabilized FEMs were proposed.
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2.3. Stabilized finite element methods

Introducing the differential operator pertinent to the convection–diffusion–reaction equation as

L�=Lt� + Lcon� + Ldif� + Lrea� = ��

�t
+ a · ∇� − ��� + ��

and another differential operator Lsta, which is to be defined below, a general stabilized FEM can
be written as: find �h ∈Sh such that(

wh,
��h

�t

)
�

+ a(wh,�h) + (Lstaw
h, �L�h)�′ = (wh, f )� ∀wh ∈Vh (5)

where �′ denotes the union of all element interiors
⋃nel

e=1 �e and � the stabilization parameter.
Several definitions for � may be found in the literature. For the numerical tests in the present paper,
the definition in [12] is used. The differential operatorLsta in (5) is chosen as follows:Lsta =Lcon
for the SUPG method, Lsta =L for the GLS method, and Lsta=−L∗ for the USFEM and
stabilized methods emanating from the VMM, respectively, where the adjoint differential operator
is indicated by L∗. In the end, additional matrix entries due to the stabilization terms have to be
added to the matrix system (4).

2.4. Temporal discretization: one-step-� scheme

Applying the one-step-� scheme to the matrix formulation (4) of the problem yields the following
equation for the vector of solution values /n+1 at the new time step n + 1:

M
/n+1 − /n

�t
+ �[(C + K + �M)/n+1] + (1 − �)[(C + K + �M)/n] = �f n+1 + (1 − �)f n

which may be rewritten as

[C + K + �modM]/n+1 = f n+1 + f nT (6)

where the ‘time right-hand side’ matrix is defined as

f nT = 1

��t
M/n − (1 − �)

�
{[C + K + �M]/n − f n}

Note that Equation (6) represents the matrix formulation of a steady convection–diffusion–reaction
equation with modified reaction coefficient

�mod = 1

��t
+ � (7)

compared to (1) and an additional right-hand-side term. In the present paper, it will be focused on
the Crank–Nicolson scheme (� = 1

2 ), the only scheme of second-order accuracy in the context of
the one-step-� family.
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An important non-dimensional number relating the spatial discretization and the temporal dis-
cretization is the Courant number, which is defined as

Cr(h, �t) = |a|�t
h

3. MULTISCALE METHOD

3.1. Strategy

Two discretization levels are considered, both spatially and temporally: the ‘usual’ level (coarse-
scale level) and a refined level (fine-scale level).

As the usual (or coarse-scale) discretization level for a convection-dominated flow, we consider a
spatial discretization with characteristic element length scale H , where the element Peclet number
Pee(H) is considerably larger than 1 (i.e. a mesh on which an adequate numerical solution is
not achievable with a SGFEM). As the refined (or fine-scale) level, we consider an adequate
spatial resolution, that is, a discretization with element length h, where Pee(h) = 1 at maximum
for all elements. Of course, such a fine-scale discretization over the complete problem domain
� is usually not viable due to the huge number of degrees of freedom to be solved for in the
end. However, the fine-scale discretization is used only in local subdomains �I of the domain
� in the present approach (i.e. in the vicinity of each node I (I = 1, . . . , Nnod) belonging to the
coarse-scale discretization, where Nnod is the number of coarse-scale nodes excluding nodes on the
Dirichlet boundary). Each of the local subdomains �I is independent of all other local subdomains
�J for J �= I . Thus, a number of Nnod fine-scale problems has to be solved in the end, each of
the resulting matrix systems being of small size. No large matrix system on the coarse-scale level
has to be solved, as will be shown further.

Remark
The nodes on the Dirichlet boundary are accounted for strongly by directly assigning the Dirichlet
values to the respective nodes and, hence, obviating any need for a creation of subdomains at
those nodes. However, it is also possible to account for the Dirichlet boundary conditions weakly,
as recently proposed in [31], in the context of the present method.

The spatial and temporal resolution cannot be chosen independently of each other. The time
step initially chosen with respect to the coarse-scale spatial discretization �T must be expected
to be much too large with respect to the fine-scale discretization: Cr(h, �T ) � 1. Therefore, as
the temporal fine-scale level, we consider an adequate time-step length �t where, at least for
the numerical tests in the present paper, Cr(h, �t) = 1 at maximum. (Of course, larger values for
Cr(h,�t) may be allowed depending on the chosen temporal discretization scheme.) A number
of nts time steps with time-step length �t are performed within each coarse-scale time step with
time-step length �T . The coarse- and fine-scale discretizations in space and time are displayed in
principle in Figure 1 for a space–time domain (1-D in space) with five inner coarse-scale nodes
and respective local subdomains.

We would like to go more into detail now. For this purpose, the (discrete) coarse-scale solution,
defined on the complete problem domain � and obtained on the coarse mesh with characteristic
length H , is denoted by �H , and the fine-scale solution, defined on the fine-scale domain(s) �I
and obtained on the respective fine mesh(es) with characteristic length h, is denoted by �h . The
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Figure 1. Coarse- and fine-scale discretizations in space–time domain (1-D in space) with the Dirichlet
boundary conditions at both ends of the spatial domain.

superscripts referring to the characteristic length will be omitted below, since there is no danger of
confusing � and �. Adopting the notation in [28] for the spatial inter-scale operators, the coarse-
and fine-scale variables are related to each other by a compression operator Q (i.e. the fine-to-coarse
inter-scale operator) and a reconstruction operator R (i.e. the coarse-to-fine inter-scale operator)
such that

�=Q�

and

� =R�

where Q and R should satisfy QR=I, with I denoting the identity operator.
In the present study, we would like to define two corresponding operators in time: a projection

operatorP (adopting the notation in [26]) and the so-called ‘activation’ operatorA. The projection
operator P is a temporal fine-to-coarse inter-scale operator defined for a fine-scale time step n
within a coarse-scale time step N as

�N =P�N/n

and, in some sense, resembles the compression operator Q in space. The activation operator A is
a temporal coarse-to-fine inter-scale operator defined as

�N/n =A�N

and, in some sense, resembles the reconstruction operator R in space. Both temporal operators act
on spatially coarse scales.
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Figure 2. Strategy for one coarse-scale time step (dark grey: coarse-scale space and time; medium grey:
fine-scale space and time; and light grey: coarse-scale space and fine-scale time).

Using the operators defined above, the strategy of the proposed multiscale method is graphically
summarized in Figure 2, with the numbers of the subsequently described steps plotted at the
respective locations. In the course of a coarse-scale time step N → N+1, seven different operations
are carried out, some of them repeatedly:

1. the initial coarse-scale field for the first fine-scale time step within this coarse-scale time
step has to be determined based on the coarse-scale solution at the end of the preceding
coarse-scale time step: �N/n=0 =A�N ;

2. the initial fine-scale field is reconstructed: �n=0 =R�N/n=0;
3. the coarse-scale field is advanced to get a predicted value for the coarse-scale field at the end

of the current fine-scale time step �̃N/n=1, which is needed for the fine-scale solver in the
form of Dirichlet boundary conditions for the fine-scale domains (see also Section 3.2.3);

4. the predicted value for the fine-scale field at the end of the current fine-scale time step is
reconstructed at the Dirichlet boundary nodes: �̃n=1 =R�̃N/n=1;

5. the fine-scale field is solved for to get �n=1;
6. the fine-scale field is then compressed such that the coarse-scale field at the end of the current

fine-scale time step is available: �N/n=1 =Q�n=1 (repeat operations (2)–(6) until �N/n=nts

is achieved); and
7. the coarse-scale field at the end of the last fine-scale time step is then projected over the

remaining time within the coarse-scale time step, �T rem = �T −nts�t , to get the coarse-scale
field at the end of the current coarse-scale time step: �N+1 =P�N/n=nts .

3.2. Components

The following components constitute the multiscale method:

• the fine-scale solver;
• the coarse-scale ‘solver’;
• the spatial compression operator Q;
• the spatial reconstruction operator R;
• the temporal projection operator P; and
• the temporal activation operator A.

The spatial compression operator Q and the temporal activation operator A can be explained in
brief. All other components will be individually and more elaborately addressed further.
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Both the spatial compression operator and the temporal activation operator are constituted
by simple injection operators. Spatially, the result from the fine-scale calculation at a particular
coarse-scale node will be injected in the form of the value at the fine-scale node which is situated
at the geometrically identical location (i.e. �N/n

I = �n
i , where the coarse-scale node I and the

fine-scale node i coincide geometrically: xI = xi ). The fine-scale meshes chosen in the numerical
tests below will all feature such a geometrically coinciding node. If that is not the case, the value
at the coarse-scale node may be obtained by an interpolation operator involving the surrounding
fine-scale nodes, instead of an injection operator. Temporally, the initial value for the first fine-scale
time step within a particular coarse-scale time step is simply obtained by injecting the result at
the end of the preceding coarse-scale time step for each coarse-scale node I : �N/0

I = �N
I .

3.2.1. Fine-scale solver. At first, the fine-scale domain size assigned to a coarse-scale node, the
fine-scale element length h, and the fine-scale time-step length �t have to be established. The
fine-scale element Peclet number Pee(h) is fixed to be of unit value. Thus, the fine-scale element
length is determined by the convective velocity field and the diffusion coefficient: h = 2�/|a|. The
ratio of the coarse- and the fine-scale element lengths H and h equals the coarse-scale element
Peclet number Pee(H). Only structured meshes with the same length h in all coordinate directions
are used on the fine-scale level. Therefore, after choosing the number of elements in all coordinate
directions, usually the same number in all directions, the size of each fine-scale domain �I is
determined by the lengths ld in all d coordinate directions: ld = ndelh. The domain �I is arranged
such that the corresponding coarse-scale node I is located in the centre of the domain.

As aforementioned, the fine-scale Courant number Cr(h, �t) is also fixed to be of unit value.
As a result, the fine-scale time-step length depends on the fine-scale element length according to
�t = h/|a|. The ratio of the coarse- and the fine-scale time-step lengths �T and �t equals the
product of the coarse-scale Courant and Peclet number:

�T

�t
=Cr(H,�T )

H

h
=Cr(H, �T )Pee(H)

With the fine-scale problem domains defined, the transient convection–diffusion–reaction
equation (1) is solved independently on each of these domains. Since the domain size and the
equation to be solved are identical for each individual fine-scale domain, the differences merely
come into play due to the respective Dirichlet boundary (2) and initial (3) conditions. These
conditions are provided by the coarse-scale solution via the spatial reconstruction operator (see
Section 3.2.3). With the necessary conditions at hand, problem (1) is numerically solved as out-
lined in Sections 2.2 and 2.4 (i.e. using the SGFEM and the one-step-� scheme with � = 1

2 ). The
respective matrix equation to be solved, (6), is repeated here for the convenience of the reader:

[C + K + �modM]/n+1 = f n+1 + 2

�t
M/n − [C + K + �M]/n + f n

3.2.2. Coarse-scale ‘solver’. As the quotation marks should indicate, the coarse-scale ‘solver’ is
not a solver in the sense of a usual FE solver. In contrast to, e.g. the HMM in [28], where the fine-
scale model merely has to provide missing data for the coarse-scale solution process, the fine-scale
solution is the only solution, and there is no actual solution procedure on the coarse-scale level in
the present approach. As a result, the coarse-scale solution is basically constituted by an ensemble
of local fine-scale solutions. However, for the provision of the Dirichlet boundary conditions via the
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Figure 3. Coarse-scale nodes and respective local subdomains in 1-D.

spatial reconstruction operator (see Section 3.2.3), an approximation of the coarse-scale solution
at the end of the current fine-scale time step has to be available. For this purpose, an explicit
Forward-Euler/central-difference solution procedure based on the transient convection–diffusion–
reaction equation (1) is performed. Because of the relatively small time step �t , a sufficiently good
approximation should be accomplishable even with such an explicit procedure.

The procedure will be explained in a 1-D setting. For the 2-D and 3-D case, the convective and
diffusive parts have to be extended to the further coordinate directions in a similar fashion. The
convection–diffusion–reaction equation in 1-D for the coarse-scale solution � reads

��

�t
+ a

��

�x
− �

�2�
�x2

+ ��= f (8)

Applying the Forward-Euler/central-difference approach based on the coarse-scale nodes to (8)
yields

�N/n+1
I − �N/n

I

�t
+ a

�N/n
I+1 − �N/n

I−1

2H
− �

�N/n
I+1 − 2�N/n

I + �N/n
I−1

H2
+ ��N/n

I = f N/n
I

and, after some calculus,

�N/n+1
I = �t f N/n

I +
(
1 − ��t − 2��t

H2

)
�N/n

I

+
(
a�t

2H
+ ��t

H2

)
�N/n

I−1 +
(

−a�t

2H
+ ��t

H2

)
�N/n

I+1

For evaluating a general coarse-scale node I , only the nearest-neighbour nodes I + 1 and I − 1
are taken into account, see Figure 3. If node I is the node nearest to the Dirichlet boundary, the
value at node I − 1 or I + 1, respectively, is given by the (coarse-scale) Dirchlet boundary value
at that node.

3.2.3. Spatial reconstruction operator. The spatial reconstruction operator R is constituted by
an interpolation operator. Two different interpolation operators are considered for the numerical
examples in the present paper: a linear and a quadratic interpolation. With reference to the simple
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1-D setting displayed in Figure 3, the linear interpolation may be explained as follows. For the
left part of the fine-scale domain, a linear interpolation within the ‘element’ between node I − 1
and node I is used to determine the values at the nodes in that part of the domain. The ‘element’
between node I and node I +1 is used for the nodes in the right part of the fine-scale domain. For
the quadratic interpolation, all three nodes are taken into account, and the respective ‘element’ is
twice as large.

Remark
The expression ‘element’ is deliberately put within quotation marks, since there is actually no
need for setting up an element structure on the coarse-scale level due to the lack of any FE-based
solution procedure on this level. However, if such an element structure is available, as it is when
the present method is implemented into an existing FE code, the respective interpolation routines
represent convenient tools to be exploited in this context, in particular for 2-D and 3-D applications.

Two types of inter-scale information transfer from the coarse- to the fine-scale level have to be
provided. On the one hand, the initial conditions for all nodes of the fine-scale domains have to
be available at the beginning of the fine-scale solution procedure. For this purpose, it is sufficient
to apply the interpolation operator to the coarse-scale solution at the end of the lastly completed
fine-scale time step n − 1→ n (see step (2) of strategy description in Section 3.1). On the other
hand, the Dirichlet conditions at the boundaries of the fine-scale domains for the current fine-
scale time step n → n + 1 are needed (see step (4) of strategy description in Section 3.1). This
is more involved, since those boundary conditions change in time as the coarse-scale solution
does. Consistent with the chosen temporal discretization scheme, the Crank–Nicolson scheme, the
values for the Dirichlet boundary conditions are assumed to be the mean of the solution at the
lastly completed time step n − 1→ n and the approximated solution at the end of the current time
step n → n + 1, as described above: (�n + �̃n+1)/2= (�n + R�̃N/n+1)/2.

It may easily be verified that the chosen operators for Q and R satisfy QR=I, that is,

�=Q�=QR�=I�

Applying the interpolation operator to the coarse-scale solution at a coarse-scale node I yields the
same fine-scale solution value at the geometrically corresponding fine-scale node i : �i =R�I .
After applying the injection operator, the same coarse-scale solution value at the coarse-scale node
is obtained: �I =Q�i .

3.2.4. Temporal projection operator. The temporal projection operator P is constituted by an
extrapolation operator, as proposed in [26]. However, besides the Forward-Euler extrapolation,
which is favoured in [26], a Forward-Euler/Crank–Nicolson predictor–corrector extrapolation,
which is only described in an extended technical report by those authors [32], is also used, and
the results obtained for both operators are compared.

We will start with the Forward-Euler extrapolation, since this also represents the predictor part
of the predictor–corrector extrapolation. As in Figure 2, it is assumed that we have are about to
start the coarse-scale time step N → N +1. At the end of the last fine-scale time step nts−1→ nts,
the remaining time within the coarse-scale time step �T is �T rem = �T − nts�t . For simplicity,
let us assume that the ratio of the coarse- and fine-scale time steps Nts/nts is an integer value.
Then, the number of remaining fine-scale time steps to reach the end of the coarse-scale time
step, which are not taken in practice, amount to nremts = �T rem/�t . Those ‘virtual’ time steps have
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to be bridged. The essential assumption underlying the extrapolation is that the discrete temporal
derivative over the remaining fine-scale time steps is equal to the discrete temporal derivative in
the last actually taken fine-scale time step:

�N+1
I − �N/nts

I

nremts �t
= �N/nts

I − �N/nts−1
I

�t
(9)

Solving Equation (9) for the coarse-scale solution �N+1
I at the end of the current coarse-scale time

step yields

�N+1
I =�N/nts

I + nremts (�N/nts
I − �N/nts−1

I ) (10)

Note that Equation (10) does not directly depend on the fine-scale time-step length �t . It is the
only equation to be solved for the Forward-Euler extrapolation.

Simultaneously, Equation (10) serves as the predictor for the predictor–corrector extrapolation.
In this context, the result of (10) is denoted �̃N+1

I to indicate it being a predicted value. With
�̃N+1

I as the initial coarse-scale field, the multiscale method as described in Section 3.1 is rerun
for the subsequent time step N + 1→ N + 2 until �N+1/nts is achieved. Finally, the coarse-scale
solution �N+1

I at the end of the coarse-scale time step N → N + 1 is obtained as a weighted
average in the form

�N+1
I = �N/nts

I + �nremts (�N/nts
I − �N/nts−1

I )

+ (1 − �)nremts (�N+1/nts
I − �N+1/nts−1

I )

where � denotes the weighting factor. For a Crank–Nicolson-like scheme, � would probably be
expected to be 1

2 at first sight. However, the weighting factor is defined as

� = nremts + 2nts − 1

2(nremts + nts)

in [32], representing the value for which second-order accuracy is achieved, see [32] for elaboration.
If nremts � nts (i.e. the remaining time within the coarse-scale time step �T rem is close to �T ), � is
approximately 1

2 . This represents a target situation also from the point of view of computational
efficiency, since we would like to perform as little fine-scale time steps within a coarse-scale time
step as possible.

3.3. Analysis of computational cost and storage requirements

In this section, we would like to briefly analyse the important aspects computational cost and
storage requirements of the proposed method in comparison to a stabilized FEM. In the DAC
method, a SGFEM is applied to each local subdomain �I . If we assume, for instance, each �I
to be discretized by four elements in each spatial direction, as in the numerical tests below, Nnod
matrix systems of size 3d × 3d , where d denotes the number of spatial dimensions, have to be
assembled and solved in each fine-scale time step. On the other hand, a matrix system of size
Nnod × Nnod has to be assembled and solved in each time step in the course of a stabilized FEM.
As a result, the storage requirements are substantially reduced for the DAC method, since it is not
necessary to store any large matrix system.
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Compared to a SGFEM, additional computational effort is required in a stabilized method for
the elementwise evaluation of the stabilization parameter and the additional matrix entries due to
the stabilization terms. Additional computational effort of the DAC method compared to a SGFEM
for the solution in a local subdomain comes into play due to the coarse-scale ‘solver’ and the
inter-scale operators. In this respect, the injection operators do not cause any notable cost, and
the temporal projection operator is also relatively cheap in terms of computational cost. More
demanding in this context are the spatial reconstruction operator (i.e. the interpolation) and the
coarse-scale ‘solver’.

If one focusses on the matrix solutions for this brief analysis, the following may be stated. Of
course, on a one-processor machine, the computational cost for the DAC method is much higher
than the one for a stabilized FEM. If we assume the CPU time to depend on the number of degrees
of freedom, which here coincides with the number of nodes, as CPU= c× ndof�, the ratio of the
CPU time for the DAC method and the stabilized FEM is

DAC − CPU

SFEM − CPU
= (2)ntsNnod

(
3d

Nnod

)�

= (2)3dntsN
1−�
nod (11)

where the constant c and the exponent � are assumed being the same for the solvers used, for
simplicity. The factor 2 in (11) comes into play for the predictor–corrector scheme, where two
solver calls have to be done for each time step. It is obvious that only for a small number of
fine-sale time steps within each coarse-scale time step nts, a very large number of coarse-scale
nodes Nnod, and/or an unfavourable solver-efficiency exponent �, the DAC method can become
competitive on a one-processor machine. However, for large-scale problems to be solved on parallel
computers, the DAC method becomes much sooner competitive, since all matrix systems can be
solved independently of each other. Thus, all inter-processor communication can be eliminated
within the solver stage.

4. NUMERICAL TESTS

In this section, we report three different test cases: a 1-D convection–diffusion–reaction problem,
a 2-D skew-convection problem with reaction, and a 2-D rotating pulse with internal layer. The
first two test cases are usually solved as stationary problems. However, they will be calculated here
using instationary algorithms, with the stationary solution representing the target solution. We are
interested in the convection-dominated as well as the convection–absorption-dominated regime for
various boundary conditions. In all test cases, the following parameters are not changed:

• the coarse-scale Courant number: Cr(H, �T ) = 1;
• the application of the Crank–Nicolson scheme to all coarse- and fine-scale time steps; and
• the spatial discretization of the fine-scale domains �I by four elements in each coordinate

direction.

The evaluation of the multiscale method proceeds in two steps for the first two test cases: firstly,
a purely spatial divide-and-conquer (SDAC) multiscale method is tested (i.e. a mere application of
the spatial inter-scale operators with the fine-scale time step used to cover the complete simulation
time), and secondly, the complete (spatial and temporal) DAC multiscale method is investigated.
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Figure 4. 1-D problem with �l = 0 and �r = 1: Pee = 10 and Damod
e = 2. Top: SDAC and bottom: DAC.

Proceeding this way, it is aimed at investigating the accuracy achievable with the spatial multiscale
method and a full temporal resolution. Afterwards, it is intended to find out to which degree
that accuracy may be maintained with the temporal part of the multiscale method additionally
introduced. Results obtained with the multiscale methods are compared to results obtained with
the SGFEM and the USFEM/VMM (with the stabilization parameter calculated according to [12]).

4.1. 1-D convection–diffusion–reaction problem

Four test series are reported for this case. At the left and right end of the problem domain �=[0, 1],
the Dirichlet boundary conditions �l and �r, respectively, are prescribed. In the first three test
series, �l = 0 and �r = 1, and in the fourth test series, �l = 1 and �r = 0. The convection velocity
a, from left to right, is fixed to be 1.0 and f to be zero for all test series. The chosen simulation
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Figure 5. 1-D problem with �l = 0 and �r = 1: Pee = 50 and Damod
e = 2. Top: SDAC and bottom: DAC.

time T = 1.0 allows for one flow of the problem variable through � to reach the stationary solution.
As initial condition �0, we choose a zero field with linear interpolation of a potential non-zero
Dirichlet boundary condition within the element next to that boundary. The problem domain is
spatially discretized by 10 uniform elements on the coarse-scale level such that H = 0.1. Due to
the choice Cr(H,�T ) = 1, the coarse-scale time-step length is �T = 0.1. All results are compared
to the exact analytical solution interpolated from node to node.

In the first test series, the diffusion coefficient � = 0.005 and the reaction coefficient � = 0 are
chosen, resulting in Pee(H) = 10 and, given the temporal discretization, Damod

e (H) = 2 based on
the modified reaction coefficient as defined in (7). Thus, there is only ‘artificial reaction’ due to
the temporal discretization in this series. The results obtained from this test series are displayed
in Figure 4. As expected, the SGFEM solution exhibits oscillations at the present element Peclet
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Figure 6. 1-D problem with �l = 0 and �r = 1: Pee = 10 and Damod
e = 10. Top: SDAC and bottom: DAC.

number. The USFEM resembles the nodally exact solution with a slight deviation at the next to last
node from the right boundary. The SDAC, shown in the top figure, yields a similar solution, with
the deviation being even smaller, if a linear interpolation is used (SDAC linear), see Section 3.2.3.
For the quadratic interpolation (SDAC quadratic), oscillations occur, although of smaller amplitude
compared to the Galerkin solution. Thus, only the DAC with linear interpolation is investigated
and displayed in the bottom figure. It may be observed that the accuracy of the SDAC is preserved
by the DAC with one (1) fine-scale time step performed within each coarse-scale time step (i.e.
the same number of time steps overall as in the non-multiscale method). This is true for both
the projective Forward-Euler (PFE) approach and the projective predictor–corrector scheme with
predictor Forward-Euler and corrector Crank–Nicolson (PFECCN).
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Figure 7. 1-D problem with �l = 1 and �r = 0: Pee = 10 and Damod
e = 10. Top: SDAC and bottom DAC.

For the second test series, the diffusion coefficient is diminished by a factor of 5 compared to
the first test series, resulting in Pee(H) = 50 (i.e. a stronger dominance of convection). Results
are reported in Figure 5. The oscillations are amplified both for the SGFEM and the SDAC with
quadratic interpolation. Both the USFEM and the SDAC with linear interpolation well approximate
the nodally exact solution, this time the USFEM being slightly closer to it. The accuracy obtained
with the (linear) SDAC is again also achieved by both the DAC-PFE(1) and the DAC-PFECCN(1).

In the third series, ‘actual’ reaction is added by setting � = 80.0 compared to the first test series.
As a result, Damod

e (H) = 10 based on the modified reaction coefficient. The results from this test
series are provided in Figure 6. Besides the expected ‘Galerkin oscillations’ and an undershoot
at the next to last node from the right boundary for the quadratic SDAC, it may be observed
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Figure 8. Problem domain with flow direction and the Dirichlet boundary conditions for skew convection.
Left: test series 1–3 and right: test series 4.

that the USFEM considerably deviates from the nodally exact solution: we have already entered a
problematic regime of large convection and large absorption for the stabilized method. The SDAC
with linear interpolation does an excellent job, almost reproducing the nodally exact solution. With
the temporal multiscale approach added, this accuracy can again be preserved. This time, however,
three and two fine-scale time steps within each coarse-scale time step for PFE amd PFECCN,
respectively, are necessary to achieve a non-oscillatory solution.

Finally, in the fourth series, we merely change the Dirichlet boundary conditions at the left
and right end of the problem domain. This constitutes the (even more) problematic situation
addressed in [1]: large convection and absorption in the presence of a negative streamwise gradient
of the solution. The results from this particularly interesting test series are given in Figure 7. It
is shown that the USFEM yields oscillations at the left boundary of even larger amplitude than
the SGFEM. In the present test series, the quadratic SDAC exhibits no oscillations. Moreover, it
yields a prediction even better than the linear SDAC. The accuracy is maintained after adding the
temporal multiscale part both for the linear and the quadratic (not shown) interpolation.

4.2. Skew convection with reaction

This test case will be investigated analogously to the previous test case, that is, four test series are
also reported for this case. The problem domain � =[0, 1]×[0, 1] is displayed in Figure 8. On
the left-hand side of Figure 8, the Dirichlet boundary conditions along with the direction of the
convective velocity vector are depicted for the first three test series. The respective situation for the
fourth test series is shown on the right-hand side of Figure 8. The norm of the convection velocity
a is fixed to be 1.0 for all test series. The right-hand side f is assumed to be zero for the first three
test series, but a source term f = 1.0 is included in the fourth test series. The chosen simulation
time T = 1.2 allows for one flow of the problem variable through the domain along the prescribed
velocity direction to reach the stationary solution. As initial condition �0, a zero field is chosen
with linear interpolation of potential non-zero Dirichlet boundary conditions within the elements
next to that boundary. The problem domain is spatially discretized by 10×10 uniform elements on
the coarse-scale level such that H = 0.1 and, consequently, �T = 0.1 as in the previous test case.
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Figure 9. Skew convection at Pee = 10 and Damod
e = 2. From left to right and top to bottom: SGFEM;

USFEM; SDAC linear; SDAC quadratic; DAC-PFE(3); and DAC-PFECCN(2).

The first test series resembles the first test series of the previous test case, that is, Pee(H) = 10 and
Damod

e (H) = 2. The results obtained from this test series are displayed in Figure 9. Oscillations are
observable for the solutions obtained with the SGFEM and the SDAC with quadratic interpolation.
All other solutions are free of any solutions. The SDAC solution with linear interpolation is
reproduced by DAC-PFE(3) and DAC-PFECCN(2). (In contrast to the respective 1-D series, more
than one fine-scale time step within each coarse-scale time step is necessary for the comparable
2-D case.) An observable difference between the USFEM solution and the (S)DAC solutions is a
more smoothed solution via the (S)DAC methods in the gradient area where the solution changes
from one to zero.
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Figure 10. Skew convection at Pee = 50 and Damod
e = 2. From left to right and top to bottom: SGFEM;

USFEM; SDAC linear; SDAC quadratic; DAC-PFE(11); and DAC-PFECCN(6).

Results from the second test series, where Pee(H) = 50, are reported in Figure 10. As in the
respective 1-D series, the oscillations are amplified both for the standard Galerkin method and the
SDAC with quadratic interpolation. Even the USFEM produces slight oscillations in the gradient
area, particularly towards the boundary x = 1.0, with a maximum value of 1.1, which is larger than
the expected maximum value of 1.0. The linear SDAC and DAC methods, again yielding similar
results, provide a smoothed solution with no oscillations. However, a larger number of fine-scale
time steps within each coarse-scale time step is needed to guarantee a stable solution. The actual
number of required fine-scale time steps appears to be in a linear dependence on the Pee, but
further investigations are necessary for confirmation.
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Figure 11. Skew convection at Pee = 10 and Damod
e = 10. From left to right and top to bottom: SGFEM;

USFEM; SDAC linear; SDAC quadratic; DAC-PFE(3); and DAC-PFECCN(2).

In the third series, we enter the problematic situation with large convection and absorption
in 2-D, see Figure 11 for the results. It is shown that the USFEM yields oscillations towards
the boundary x = 0.0, while the SGFEM produces oscillations towards the boundary y = 1.0. All
(S)DAC methods are free of any oscillations and well approximate the expected solution field.
The SDAC with quadratic interpolation appears to be closest to it.

In the fourth test series, we pose another challenge to the methods by changing the boundary
conditions, the direction of the convection velocity, and adding a non-zero right-hand side compared
to the second test series. The results are displayed in Figure 12. Huge oscillations occur when
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Figure 12. Skew convection at Pee = 50 and Damod
e = 2 with source term. From left to right and top to

bottom: SGFEM; USFEM; SDAC linear; SDAC quadratic; DAC-PFE(10); and DAC-PFECCN(5).
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Figure 13. Rotating pulse with internal layer at Pee = 50 and Damod
e = 2. From left to right and top to

bottom: SGFEM; USFEM; DAC-PFE(10); and DAC-PFECCN(6).

using the SGFEM and the SDAC with quadratic interpolation. Even the USFEM yields substantial
oscillations towards the outflow boundary. The solutions obtained with the linear SDAC and,
after adding the temporal part of the multiscale method, the DAC-PFE(10) as well as the DAC-
PFECCN(5) again show no oscillations and produce a smoothed solution which probably predicts
slightly too low values in the gradient area. The maximum value obtained with the help of the
DAC method is about �max = 0.71, whereas the actual maximum value should be expected to be
slightly below 1.0, a value the USFEM also would produce approximately, in case the remaining
oscillation was taken out of account.

4.3. Rotating pulse with internal layer

The problem domain for this test case is �= [−1, 1]× [−1, 1]. Homogeneous Dirichlet boundary
conditions are assumed on all boundaries. A velocity vector field a= 	(r)(y,−x) with the function
	(r) = 1 − r2 (radius r =√x2 + y2 from the origin of the coordinate system) for r�1.0 and
	(r) = 0 for r>1.0 is prescribed. The maximum velocity a = 0.385 occurs at a radius r = 0.577.
The right-hand side is assumed to be f = 1.0 if r�0.5 and zero elsewhere. The simulation is
run until T = 3.1≈ 
. A zero field is chosen as initial condition �0. The problem domain is
spatially discretized by 20× 20 uniform elements on the coarse-scale level such that H = 0.1 and,
consequently, �T = 0.1 as in the previous test cases. The diffusion coefficient is chosen to be
� = 0.0003849, resulting in Pee(H) = 50. Only artificial reaction due to the temporal discretization
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is considered (Damod
e (H) = 2), since we have already learned about the good performance of the

DAC method in the presence of large absorption for the afore investigated problems. In the present
case, we would rather like to reveal the still existing shortcoming of the DAC method in the case
of large convection without large absorption.

The results obtained from this test case are shown in Figure 13. The interior layer to be resolved
appears at a radius of about 0.5. The SGFEM is not able to resolve the interior layer without
oscillations due to the high element Peclet number. The maximum and minimum values of the
solution field obtained with the SGFEM are �max = 3.64 and �min=−0.35, respectively. The
USFEM removes most of the oscillations and provides a good approximation of the (expected)
solution field, although some slight oscillations still occur (�max = 3.30, �min=−0.15). The DAC-
PFE and DAC-PFECCN remove all oscillations (�min = 0.0), but the shortcoming is also clearly
notable: the interior layer is smoothed out too much. The maximum values, which is located
exactly at the origin of the coordinate system in contrast to the other methods, are �max = 2.43 and
2.47, respectively, and thus about 25% smaller than the maximum value predicted by the USFEM.

5. CONCLUSIONS

A multiscale method has been presented which aims at providing a stable and accurate solution
of transient convection–diffusion–reaction problems. The basic feature of the presented method
culminates in its name: ‘divide and conquer’, that is, the problem is partitioned into small (fine-
scale) problems, and the assembly of the solutions to the partitioned problems constitutes the
overall (coarse-scale) solution. Phrased in the wording of [25], where the basic idea for such an
approach has been formulated, although not aimed at the particular problem of a convection–
diffusion–reaction equation, one may describe the situation as follows: we cannot solve (spatially)
large-scale problems over long time intervals, so we solve (spatially) small-scale problems over
short time intervals and try to cover the ‘gaps’ in space and time.

Two main goals have led to the development of the present method: a desired independence of
any heuristic parameter such as the stabilization parameter in stabilized methods and a desire for
a coherent multiscale strategy in space and time, which cannot be found in most other multiscale
approaches in the literature. The components of the present method are all standard and relatively
simple: the SGFEM and the one-step-� scheme for the fine-scale solution, an extrapolation for
advancing the coarse scales and the spatial and temporal inter-scale operators are constituted by
relatively simple injection, interpolation, and extrapolation operators. In terms of computational
cost, it has been analysed in Section 3.3 that the proposed method can become competitive to
stabilized methods for large-scale computations carried out on parallel computers. In terms of
storage requirements and solver technology, the presented method is less demanding in any case
due to the fact that it is not necessary to store a large matrix and to employ a sophisticated
solver.

The new approach has been tested for three test cases, of which the first two were further
divided into several test series with varying element Peclet and Damköhler numbers. It was
intended to investigate the two most problematic regimes: the ‘classical’ challenging regime of
large convection and the regime of large convection and large absorption. The latter one was
identified in [1] to be particularly challenging in the case of an additional presence of a negative
streamwise gradient of the solution. In fact, stabilized finite element methods have not been able
to guarantee stable solutions for this regime. As a result of all test cases performed, a major
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achievement in terms of stability and a still to be noted shortcoming in terms of accuracy may be
noted for the present method.

The present method with linear interpolation as the spatial reconstruction operator provides
solutions which are completely free of oscillations for any regime. In contrast, standard stabilized
methods suffer from (slight) oscillations in the large-convection regime, as observed for the 2-D
test cases. Moreover, they are not able to provide an acceptable solution in the large-convection-
and-absorption regime. The notable shortcoming of the proposed multiscale method reveals itself
in the too smooth resolution of the regions where a sharp gradient of the solution field occurs.
The reason for this may be traced back, among other things, to the choice of a simple linear
interpolation as the spatial reconstruction operator. The authors are confident that already slightly
more sophisticated reconstruction operators may provide a better resolution. The investigation of
this option will be the subject of future work.

The temporal projection operator, representing the other of the two most important inter-scale
operators investigated in the present study, is able to fully ‘preserve’ the spatial approximation
quality in time, if a sufficient number of small-scale time steps within each coarse-scale time step
is taken. Both the Forward-Euler extrapolation and the Forward-Euler/Crank–Nicolson predictor–
corrector extrapolation work equally well in the sense that the predictor–corrector extrapolation,
which needs twice the computational effort compared to the Forward-Euler extrapolation for one
time step, required about half the number of time steps in all test cases. Since the computational
effort is comparable, as a result, it is suggested to use the Forward-Euler extrapolation due to its
slightly simpler implementation.
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